欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产

Feature: Aussie scientists' global challenge to deter "overconfident" robots

Source: Xinhua| 2019-10-25 19:55:31|Editor: Li Xia
Video PlayerClose

SYDNEY, Oct. 25 (Xinhua) -- We could soon live in a world where domestic service robots perform household chores and clean up for us as we go about our daily lives. But what if your new mechanical helper decides to put your laptop in the dishwasher, places your cat in the bathtub and throws your treasured possessions into the trash?

Current vision systems being tested on "simulated" domestic robots in the cluttered, unpredictable environments of the real world, are suffering severely from what experts refer to as overconfidence -- meaning robots are unable to know when they don't know exactly what an object is.

When introduced into our day to day lives, this overconfidence poses a huge risk to people's safety and belongings, and represents a barrier for the development of autonomous robotics.

"These (models) are often trained on a specific data set, so you show it a lot of examples of different objects. But in the real world, you often encounter situations that are not part of that training data set," Niko Sünderhauf explained to Xinhua. He works as a chief investigator with the Australian Center for Robotic Vision (ACRV), headquartered at Queensland University of Technology.

"So, if you train these systems to detect 100 different objects, and then it sees one that it has not seen before, it will just overconfidently think it is one of the object types it knows, and then do something with that, and that can be damaging to the object or very unsafe."

Earlier this year, in an effort to curb these potentially cocky machines, Sünderhauf's team at the ACRV launched a world-first competition, the Robotic Vision Challenge, inviting teams from around the world to find a way to make robots less sure of themselves, and safer for the rest of us.

Sünderhauf hopes that by crowdsourcing the problem and tapping into researchers' natural competitiveness, they can overcome this monumental stumbling block of modern robotics.

The open-ended challenge has already captured global attention due to its implications regarding one of the most excitement inducing and ear-tingling concepts in robotics today -- deep learning.

While it dates back to the 1980s, deep learning "boomed" in 2012 and was hailed as a revolution in artificial intelligence, enabling robots to solve all kinds of complex problems without assistance, and behaving more like humans in the way they see, listen and think.

When applied to tasks like photo-captioning, online ad targeting, or even medical diagnosis, deep learning has proved incredibly efficient, and many organizations reliably employ these methods, with the cost of mistakes being relatively low.

However, when you introduce these intelligence systems into a physical machine which will interact with people and animals in the real world -- the stakes are decidedly higher.

"As soon as you put these systems on robots that work in the real world the consequences can be severe, so it's really important to get this part right and have this inbuilt uncertainty and caution in the system," Sünderhauf said.

To solve these issues would undoubtedly play a part in taking robotics to the next level, not just in delivering us our autonomous housekeepers, but in a range of other applications from autonomous cars and drones to smart sidewalks and robotic shop attendants.

"I think this is why this push is coming out of the robotic vision lab at the moment from our side, because we understand it's important and we understand that deep learning can do a lot of important things," Sünderhauf said.

"But you need to combine these aspects with being able to detect objects and understand them."

Since it was launched in the middle of the year, the competition has had 111 submissions from 18 teams all around the world and Sünderhauf said that while results have been promising, there is still a long way to go to where they want to be.

The competition provides participants with 200,000 realistic images of living spaces from 40 simulated indoor video sequences, including kitchens, bedrooms, bathrooms and even outdoor living areas, complete with clutter, and rich with uncertain objects.

Entrants are required to develop the best possible system of probabilistic object detection, which can accurately estimate spatial and semantic uncertainty.

Sünderhauf hopes that the ongoing nature of the challenge will motivate teams to come up with a solution which may well propel robotics research and application on a global scale.

"I think everybody's a little bit competitive and if you can compare how good your algorithm and your research is with a lot of other people around the world who are working on the same problem, it's just very inspiring," Sünderhauf said.

"It's like the Olympic Games -- when everybody competes under the same rules, and you can see who is doing the best."

In November, Sünderhauf will travel with members of his team to the annual International Conference on Intelligent Robots and Systems (IROS) held in Macao, China to present and discuss their findings so far.

As one of three leading robotics conferences in the world, IROS is a valuable opportunity for researchers to come together to compare notes, and collaborate on taking technology to the next level.

"There will be a lot of interaction and discussion around the ways forward and that will be really exciting to see what everybody thinks and really excited to see different directions," Sünderhauf said.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001385028851
欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产
亚洲一级影院| 精品久久久久久中文字幕2017| 不卡大黄网站免费看| 日韩激情免费视频| 亚洲欧美日韩精品| 强制捆绑调教一区二区| 亚洲三级在线观看视频| 国内精品国产三级国产在线专| 久久综合狠狠综合久久综合88| 一级黄色片日本| 91在线观看免费高清完整版在线观看| 曰韩精品一区二区| 久久精品国产大片免费观看| 2018中文字幕第一页| 精品国内产的精品视频在线观看| 成人性视频网站| 91嫩草丨国产丨精品| 日韩av电影免费在线| 日韩精品一区二区三区蜜臀| 美国欧美日韩国产在线播放| 欧美黄色高清视频| 翔田千里亚洲一二三区| 亚洲欧美精品suv| 26uuu久久天堂性欧美| 7m精品国产导航在线| www.射射射| 日韩av高清不卡| 91国偷自产一区二区使用方法| 国产欧美日本| 调教驯服丰满美艳麻麻在线视频| 欧美日韩最好看的视频| 精品伊人久久97| 久久中文字幕电影| 啪啪亚洲精品| 美女又黄又免费的视频| 制服丝袜中文字幕一区| 国产成人一区在线| 天堂日韩电影| 国产精品99精品无码视亚| av一本久道久久波多野结衣| 91麻豆精品国产自产在线 | 国产高清日韩| 99精品人妻少妇一区二区| 国产精品久久久久影院日本| 91精品婷婷国产综合久久性色| 国产精品99久久久| 日韩在线麻豆| v天堂中文在线| 亚洲第一页在线视频| 欧美在线xxx| 欧美一区二区三级| 欧美韩日一区二区三区| 欧美.日韩.国产.一区.二区| 色婷婷在线影院| 国产精品无码电影在线观看| 欧美一区二区三区艳史| 精品国产乱码久久久久久夜甘婷婷| 91一区二区在线| 久久精品无码一区| 黄色av免费在线播放| 欧美精品久久| 国产精品电影一区| 国产一区二区三区精品久久久 | 极品中文字幕一区| 99精品视频在线免费播放 | 亚洲成人资源网| 国产麻豆精品在线观看| 欧美日韩在线大尺度| 95精品视频| 毛茸茸free性熟hd| 欧美成人精品欧美一级乱| 国产一区二区在线网站| 国产精品电影观看| 久久久精品日本| 亚洲国产精品va在线观看黑人| 久久蜜桃精品| 亚欧洲精品视频在线观看| 久久精品国产亚洲AV成人婷婷| 爆乳熟妇一区二区三区霸乳| 欧洲精品在线一区| 在线亚洲免费视频| caoporn国产一区二区| 亚洲视频中文| 日韩精品一区二区三区免费观看| 精品一区二区三区亚洲| 欧美精品日韩在线| 风韵丰满熟妇啪啪区老熟熟女| 浮妇高潮喷白浆视频| 中文字幕一区二区三区四区五区人| 91成人理论电影| 国产精品日韩在线观看| 欧美一区二区三区四区在线 | 成人在线日韩| 欧美另类videoxo高潮| 卡一卡二卡三在线观看| 中文在线一区二区三区| 少妇伦子伦精品无吗| 中文字幕日本最新乱码视频| 波多野结衣 作品| 日韩第一页在线观看| 亚洲女人毛片| 精品国产三级a∨在线| 欧美一级免费在线观看| 中文字幕第一页亚洲| 最新av在线免费观看| 伊人色综合久久天天五月婷| 欧美日韩视频免费在线观看| 国产av熟女一区二区三区| 欧美日韩在线高清| 亚洲资源视频| 99精品人妻少妇一区二区 | 欧美色倩网站大全免费| 色偷偷成人一区二区三区91 | 久久久精品少妇| 91丝袜超薄交口足| 97国产在线播放| 国产不卡一区二区视频| 中文字幕久精品免| 亚欧洲精品在线视频免费观看| 国产成人av一区二区三区| 亚洲免费不卡| 欧美日韩高清免费| 中文字幕色呦呦| 成人午夜激情av| 91久久精品国产91性色| 91九色蝌蚪国产| 日韩高清专区| 精品无码国产一区二区三区av| 亚洲国产精品久久久久婷蜜芽| 成年网站在线播放| 国产亚洲色婷婷久久99精品91| 国产精品国产精品88| 91精品国产自产精品男人的天堂 | 看亚洲a级一级毛片| 高清精品视频| 麻豆一区二区三| 亚洲综合在线免费观看| 亚洲日本欧美日韩高观看| 91精品久久久久| 久久国产视频网站| 国产区精品视频| 杨幂一区欧美专区| 稀缺小u女呦精品呦| 成人午夜888| 99在线观看免费视频精品观看| 97成人超碰视| 777亚洲妇女| 日本欧美精品在线| 精品免费久久久久久久| 人与嘼交av免费| 国产韩日影视精品| 99riav久久精品riav| 7777精品伊人久久久大香线蕉| 欧美黄色性视频| 欧美性视频在线播放| 喷水视频在线观看| 97色伦图片97综合影院| 国产午夜精品福利| 日韩成人免费视频| 亚洲精品欧美日韩专区| 国产又大又黄又粗又爽| 97一区二区国产好的精华液| 日韩成人免费看| 黄色成人在线播放| 18久久久久久| 日韩精品一区中文字幕| 国产精品日韩三级| 国产三级短视频| 久久综合亚州| 欧美日韩精品欧美日韩精品| 国产精品青草久久久久福利99| 午夜精品久久久内射近拍高清| 午夜久久av| 99免费精品视频| 永久免费精品影视网站| 日本女人高潮视频| 一区二区三区日本视频| 欧美高清视频看片在线观看 | 制服丝袜中文字幕亚洲| 国产欧美日韩最新| 99久久99精品| 亚洲经典在线| 欧美精三区欧美精三区| 国产精品日韩高清| 国产91色在线|亚洲| 精品少妇一区二区三区免费观| 亚洲第一网站| 亚洲欧洲日产国码二区| 97久久精品国产| 加勒比av中文字幕| 欧美日本一区| 日韩午夜三级在线| 日韩精品欧美在线| 欧美黄视频在线观看| 国产偷v国产偷v亚洲高清| 欧美日韩不卡合集视频| 999精品视频在线| 亚洲福利一区| 日韩女优制服丝袜电影| 中文字幕乱码免费| 欧美艳星介绍134位艳星| 图片区小说区区亚洲影院| 国产精品区一区二区三在线播放 | 色狠狠av一区二区三区香蕉蜜桃| 欧美乱做爰xxxⅹ久久久| 欧美亚洲精品在线| 狠狠色狠狠色综合| 亚洲欧美中文字幕在线一区| 漂亮人妻被中出中文字幕| 亚洲综合国产激情另类一区| 亚洲精品一区在线观看| cao在线观看| 日韩综合小视频| 欧美午夜电影网| 91精品久久久久久久久久 | 一区视频免费观看| 香蕉久久一区二区不卡无毒影院 | 日韩久久久久久久久久久久| 欧美呦呦网站| 6080国产精品一区二区| 精品一区二区成人免费视频| 亚洲激情五月| 亚洲精品中文字幕av| 日韩亚洲在线视频| 日韩和欧美的一区| 欧美成人免费网| 成都免费高清电影| 亚洲图片激情小说| 日韩av电影免费在线| 好吊妞国产欧美日韩免费观看网站 | 欧美壮男野外gaytube| 亚洲精品成人三区| 欧美伦理在线视频| 日韩免费高清视频| 亚洲久久中文字幕| av爱爱亚洲一区| 精品欧美日韩在线| 欧美成人激情| 最近日韩中文字幕中文| 国产精品1000部啪视频| 一区二区三区在线视频观看| 日韩aⅴ视频一区二区三区| 亚洲精品国产成人影院| 美女视频黄免费的亚洲男人天堂| 欧美亚洲日本在线| 91 com成人网| 在线 丝袜 欧美 日韩 制服| 天天免费综合色| 欧美国产日韩在线视频| 亚洲主播在线观看| 亚洲第一中文av| www.成人在线| 色一情一乱一伦一区二区三欧美| 好吊日精品视频| 国产精品9999| 综合av在线| 国产91精品高潮白浆喷水| 欧美男男freegayvideosroom| 久久理论电影网| 特级西西444www大精品视频| 日本激情一区| 欧美精品第一页在线播放| jazzjazz国产精品久久| 精品国产乱码久久久久久牛牛 | 99re8这里有精品热视频8在线| 在线视频欧美精品| av之家在线观看| 免费成人小视频| 成人免费观看a| 亚洲国产日韩欧美在线| 午夜精品久久17c| 日韩激情啪啪| www.美女亚洲精品| 亚洲一区二区电影| 亚洲国模精品一区| 亚洲码无人客一区二区三区| 欧美日韩综合在线| 欧美熟妇精品一区二区蜜桃视频| 亚洲成人1区2区| av无码精品一区二区三区| 中文字幕免费不卡在线| 日韩网站在线免费观看| 国产亚洲欧美日韩日本| 免费人成自慰网站| 中文在线资源观看网站视频免费不卡 | 国产精品国产亚洲精品看不卡| 99久精品国产| 日韩精品在线视频免费观看| 国产精品亲子乱子伦xxxx裸| a级网站在线观看| 羞羞答答成人影院www| 欧美猛男性生活免费| 精品国产网站| 91精品国产综合久久香蕉922| 精品国产欧美日韩| 全亚洲最色的网站在线观看| 欧美日韩 国产精品| 国产精品12| 久久电影网电视剧免费观看| 国内不卡一区二区三区| 精品一区二区三区在线观看| 亚洲欧洲一区二区| 国产丝袜欧美中文另类| 亚洲精品在线网址| 亚洲高清久久网| 欧美jizz19性欧美| 国产精品高清在线| 日韩精品一二区| 国产树林野战在线播放| ㊣最新国产の精品bt伙计久久| 97超碰人人爽| 日韩精品极品视频免费观看| 日韩三级av高清片| 国产成人精品在线视频| 久久精品久久综合| 全黄性性激高免费视频| 疯狂做受xxxx欧美肥白少妇| 日本黄区免费视频观看| 久久久久久久久电影| 亚洲作爱视频| 超碰10000| 欧美性猛交xxxx乱大交退制版| 懂色av懂色av粉嫩av| 午夜精品一区二区三区在线| 久久精品九九| 国产日韩欧美精品在线观看| 一本久久综合| 男人草女人视频| 色哟哟精品一区| av成人综合| 国产精品国产精品国产专区不卡| 久久久久国产精品麻豆| 超碰caoprom| 久久视频在线看| 激情av综合网| 三级网站免费看| 国产一区二区三区丝袜| 亚洲一区二区动漫| 欧美日韩黄色一级片| 欧美不卡123| 精品999日本| 国产黄色特级片| 亚洲一区www| 亚洲一区二区三区免费在线观看| 无码日本精品xxxxxxxxx| 日韩欧美国产wwwww| 国产精品v亚洲精品v日韩精品| r级无码视频在线观看| 欧美日韩在线第一页| 九色丨蝌蚪丨成人| 蜜桃成人在线| 精品视频1区2区| 欧美在线二区| 无限资源日本好片| 在线国产精品视频| 懂色av中文字幕一区二区三区 | 精品免费一区二区三区| 极品中文字幕一区| 亚洲精品在线视频播放| 麻豆乱码国产一区二区三区 | www.4hu95.com四虎| 午夜久久久久久| 日韩aaaa| av免费在线播放网站| 久久91精品国产| 国产目拍亚洲精品99久久精品| 视频精品一区| 人人妻人人澡人人爽欧美一区双| 亚洲精品成人久久| 久久99热这里只有精品| bl动漫在线观看| 91精品国产综合久久久久久蜜臀| 亚洲高清免费观看| 欧美日韩免费观看一区=区三区| www.成人黄色| 91手机在线观看| 亚洲色图狂野欧美| 国产欧美日韩精品a在线观看| 蜜桃一区av| 小日子的在线观看免费第8集| 国产精品久久在线观看| 欧美日韩一卡二卡三卡| 日本不卡视频在线| 91嫩草丨国产丨精品| 在线视频不卡一区二区三区| 久久久精品久久久| 亚洲电影在线播放| 首页亚洲欧美制服丝腿| 日本爱爱小视频| 亚洲精品视频一区二区三区| 亚洲人成网站777色婷婷| 欧美特黄a级高清免费大片a级| 手机毛片在线观看| 欧美久久在线观看| 国产精品第二页| 五月天亚洲精品| 精品大片一区二区| 亚洲熟女一区二区三区| 久久精品国产精品国产精品污| 国产一区二区三区18|