欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产

China Focus: Data-labeling: the human power behind Artificial Intelligence

Source: Xinhua| 2019-01-17 20:42:21|Editor: ZX
Video PlayerClose

BEIJING, Jan. 17 (Xinhua) -- In a five-story building on the outskirts of Beijing, 22-year-old Zhang Yusen stares at a computer screen, carefully drawing boxes around cars in street photos.

As artificial voices replace human customer services in call centers and robots replace workers on production lines, Zhang, a vocational school graduate, has found a steady job: data-labeling, a new industry laying the groundwork for the development of AI technologies.

SUPERVISED LEARNING

As the "artificial" part of AI, data labeling receives much less media attention than the "intelligence" part of computer algorithms.

Facial recognition, self-driving, diagnosis of tumors by computer systems and the defeat of best human Go player by Alpha Go are ways AI technologies have amazed in recent years.

However, for researchers, the current AI technologies are still quite limited and at an early stage.

Professor Chen Xiaoping, director of Robotics Lab at the University of Science and Technology of China, said all AI technologies so far have come from "supervised" learning in which an AI system is trained with specific forms of data.

Take training a machine to recognize dogs for instance: the system must be fed vast numbers of pictures labeled by humans to tell the system which pictures have dogs and which don't.

Chen noted the human brain is excellent at processing unknown information with reasoning, but it is still impossible for AI. A kindergartener can make the guess of soccer ball from clues like "a black and white round object you can kick," but it's not a easy task for AI. An AI system might be able to tell all different kinds of dogs, but it cannot tell a stuffed animal is not real if such images are not sent to the system.

Yann LeCun, AI scientist at Facebook and widely considered one of the "godfathers" of machine-learning, said recently, "Our best AI systems have less common sense than a house cat."

Behind powerful AI algorithms are vast complicated dataset built and labeled by humans.

ImageNet is one of the world's largest visual databases designed to train AI systems to see. According to its inventors, it took nearly 50,000 people in 167 countries and regions to clean, sort and label nearly a billion images over more than three years.

QUALITY CHECKING

For top researchers like Chen Xiaoping, the next AI breakthrough is expected in self-supervised or unsupervised learning in which AI systems learn without human labeling. But no one knows when it will happen.

"I think in the next five to 10, maybe 15 years, AI systems will still rely on labeled data." said Du Lin, CEO and founder of data-labeling firm BasicFinder.

Du published his first paper about computer vision when he was in high school. After graduating from college, his first windfall came from selling a startup data-digging firm for 4 million U.S. dollars.

In 2014, Du and his partners noticed the rise of AI deep-learning and founded BasicFinder. The company is now a leading data-labeling company, with clients including Stanford University, the Chinese Academy of Sciences, China Mobile and Chinese AI startup SenseTime.

At BasicFinder, a typical work flow starts with taggers like Zhang Yusen. After training two to three months, they draw boxes around cars and pedestrians in street photos, tag ancient German letters, or transcribe snatches of speech.

The labeled images are submitted to quality inspectors who check 2,000 pictures a day. If one image is found inaccurately tagged in every 500 images in random checks, the company is not paid the original price. If the error rate exceeds 1 percent, clients can ask to change data-taggers.

Du said the company has been optimizing work flow to ensure greater accuracy as well as to protect intellectual property and privacy.

HUMAN IN LOOP

A model that requires human interaction is called "human in the loop" and humans remain in the loop much longer than many have expected, said Du.

Data-taggers now work on outsourcing platforms as far afield as Mexico, Kenya, India and Venezuela. Anyone can create an account to become a freelance data-tagger.

But Du strongly disagrees that data-labeling companies, depicted in some media reports as "the dirty little secret" of AI, resemble Foxconn's infamous iPhone factories.

He noted that due to the nature of AI deep-learning, it is the greater accuracy of labeled data that keeps a company alive and thriving, rather than low prices and cheap labor.

China's Caijing magazine reported in October last year that about half of data-labeling companies in China's Henan Province went bust in 2018 as orders dried up.

Du said that in the past two years, many found data-labeling a tough market. The first spurt of growth has ended and a lot of workshop-like companies have been knocked out.

A full-time data-tagger at BasicFinder can earn 6,000 to 7,000 yuan a month, along with accommodation and social benefits. In the first three quarters of 2018, the disposable income per capita in Beijing was 46,426 yuan, around 5,158 yuan a month, according to local government statistics.

Zhang Yusen and his girlfriend, who also works at BasicFinder as a quality inspector are so far enjoying their work.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001377521541
欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产
wwww国产精品欧美| 欧美一级黑人aaaaaaa做受| 日本福利一区二区| 色综合视频二区偷拍在线| 欧美黑人巨大videos精品| 精品久久久久久久久久久久久| 欧美日韩亚洲一区二区三区四区| 国产精品免费不| 日韩欧美一卡二卡| 成人中文字幕av| 视频一区在线播放| 欧美激情xxxx性bbbb| 99久久久无码国产精品性| 久久久精品2019中文字幕之3| 国产精品久久久久av免费| 欧州一区二区三区| 91精品国产福利在线观看| 无码少妇一区二区三区芒果| 韩国三级在线一区| 国产精品亚洲片夜色在线| 欧洲大片精品免费永久看nba| 在线观看亚洲精品视频| 国产aaa一级片| 国内精品伊人久久久久av影院| 欧美一级在线亚洲天堂| 国产精品毛片无码| 欧美精品自拍偷拍动漫精品| 午夜免费看毛片| 国产毛片精品视频| 成人做爽爽免费视频| 色婷婷狠狠五月综合天色拍 | 狠狠爱www人成狠狠爱综合网| 亚洲午夜av电影| 国产精品jizz| 亚洲成人久久影院| 波多野结衣家庭教师在线| 国产黄色91视频| 超碰97网站| 欧美大片专区| 欧美一级淫片videoshd| 伦理一区二区三区| 在线色欧美三级视频| 久久久久无码精品国产sm果冻 | 欧美一级成年大片在线观看| 深夜福利一区二区三区| 欧美刺激脚交jootjob| 精品亚洲视频在线| 一区二区三区在线视频观看58| 18视频在线观看娇喘| 日韩av免费看网站| 少妇熟女一区二区| 爽好多水快深点欧美视频| 国产精品视频xxx| 国产精品videosex性欧美| 亚洲免费视频网站| 精品一区二区在线观看视频| 91黄视频在线观看| 成人三级做爰av| 亚洲高清视频的网址| 色综合久久88| 欧美一级网址| 亚洲国产精品嫩草影院久久| 久久精品国产亚洲AV成人婷婷| 欧美午夜寂寞影院| 潘金莲一级淫片aaaaa| 性久久久久久久久久久久| 国产裸体舞一区二区三区| 中文字幕精品三区| 国产精品无码av在线播放| 国产精品你懂的在线| 亚洲自偷自拍熟女另类| 亚洲图片你懂的| 激情综合网俺也去| 欧美视频13p| 网站免费在线观看| 欧美一卡二卡三卡四卡| 亚洲少妇xxx| 亚洲视频在线观看网站| caoporn成人| 欧美精品一区二区三区国产精品| 国产剧情在线观看一区| 日韩av电影院| 久久xxxx| 日韩电影免费观看高清完整| 99久久夜色精品国产网站| 成人黄色大片网站| 亚洲一区日韩精品中文字幕| 性生活一级大片| 欧美美女直播网站| www.黄色com| 色妞在线综合亚洲欧美| 国产精品亚洲片在线播放| 国产精品成人国产乱一区| 国产精品乱看| 亚洲国产一区二区精品视频| 久久精品欧美一区二区三区不卡 | 久久久久久久久久久av| 久久久国产精品| 99国产精品久久久久老师| 免费在线视频一区| 女同性恋一区二区| 亚洲婷婷在线视频| 波多野结衣视频播放| 精品美女在线观看| 国内露脸中年夫妇交换精品| 日韩免费av片在线观看| 日韩成人免费看| 91嫩草国产丨精品入口麻豆| 亚洲综合丝袜美腿| 国产jjizz一区二区三区视频| 亚洲久久久久久久久久| 国产精选一区| 国产日本一区二区三区| 久久综合色鬼综合色| 日本激情视频在线播放| 日韩精品在线一区二区| 女厕嘘嘘一区二区在线播放| 国产拍精品一二三| 成人网在线播放| 欧美日韩中文不卡| 亚洲精品在线三区| 欧美综合视频| 久久伊人资源站| 亚洲欧洲日韩综合一区二区| 女~淫辱の触手3d动漫| 欧美尺度大的性做爰视频| 国产农村妇女精品一区二区| 老汉色影院首页| 午夜国产精品影院在线观看| 国产一区二区视频在线观看免费| 欧美综合在线第二页| 国产在线精品不卡| 天天操狠狠操夜夜操| 亚洲电影免费观看高清完整版在线观看| 猛男gaygay欧美视频| 国产伦精品一区二区三区照片91 | 日本久久久久久久久| 国产一区二区三区在线观看免费| 我看黄色一级片| 亚洲男人av在线| 91久久亚洲| 久久无码高潮喷水| 精品国产电影一区二区| 在线中文字幕亚洲| 国产亚洲精品久久久久久久| 欧美日本在线看| 经典一区二区| 一本久道久久综合狠狠爱亚洲精品| 亚洲国产精品一区二区久久恐怖片 | 97在线观看视频| 国产成人午夜精品影院观看视频| 日韩av影视大全| 欧美日韩成人在线视频| 国产精品影视在线观看| 中文字幕在线观看91| 欧美精品九九久久| av成人动漫在线观看| wwwwww日本| 国产不卡av在线免费观看| 久久久久久久综合色一本| 91免费在线看片| 成人性生交大片免费看小说 | 色999国产精品| 国产性生活免费视频| 精品久久久久一区二区国产| 欧美日韩亚洲一区三区| 37pao成人国产永久免费视频| 日韩精品视频免费专区在线播放| 一区二区日韩免费看| 日本超碰在线观看| 欧美极品少妇xxxxⅹ喷水| 成人av电影在线播放| 91免费在线看片| 国产超碰91| 在线亚洲欧美专区二区| 欧美欧美全黄| 一道本在线免费视频| 欧美精品www| 国产精品看片你懂得| 日韩精品一区二区三区中文字幕| 精品一区在线播放| 欧美日韩国产天堂| av成人激情| 中文字幕av一区二区三区人妻少妇 | 99亚洲精品视频| 日韩av中文字幕在线免费观看| 日韩国产精品大片| 蜜桃传媒一区二区亚洲av | 亚洲综合图片一区| 国产精品久久精品国产| 精品视频一区二区不卡| 噜噜噜躁狠狠躁狠狠精品视频 | 免费一区视频| 精品无码av一区二区三区| 国产精品高潮视频| 欧美日韩中文在线| 激情欧美一区二区三区| 国产一精品一aⅴ一免费| 成人免费视频网址| 欧美日韩在线三级| 日韩电影在线免费| 九一在线免费观看| 午夜欧美一区二区三区免费观看| 精品亚洲夜色av98在线观看| 91偷拍与自偷拍精品| 欧美特黄不卡| 国产男女无遮挡| 日韩av色综合| 91久久久免费一区二区| 亚洲专区免费| 特级西西人体高清大胆| 亚洲一区二区三区加勒比| 日韩在线国产精品| 一区二区三区在线观看视频| 欧美日韩免费观看一区=区三区| 中国特级黄色大片| 国产日韩久久| 亚洲视频视频在线| ...av二区三区久久精品| 亚洲九九在线| 亚洲の无码国产の无码步美| 欧美精品一区在线| 在线免费看av不卡| 亚洲午夜精品网| 免费永久网站黄欧美| 国精产品一区一区二区三区mba| 欧美aaa在线观看| 国内精品久久久久久久| 色综合一个色综合| 麻豆精品视频在线| 好吊妞国产欧美日韩免费观看网站 | 啊v视频在线一区二区三区 | 韩国一区二区三区美女美女秀| 日韩成人高清在线| 中文字幕一区二区在线观看| 一级毛片免费高清中文字幕久久网| 制服丝袜第一页在线观看| 色阁综合av| 国内精品中文字幕| 欧美日韩久久久| 91在线视频在线| 久久综合av| 男女做爰猛烈刺激| 男人天堂av片| 国产美女91呻吟求| 亚洲精品在线91| 亚洲二区在线视频| 免费观看久久久4p| 伊人久久大香线蕉综合网站| 日本aaa视频| 国产在线播放观看| 51国偷自产一区二区三区| 亚洲欧洲av一区二区| 午夜精品久久久久久久99水蜜桃| 老司机午夜精品99久久| 猛男gaygay欧美视频| 精品人妻一区二区三区香蕉| 18黄暴禁片在线观看| 99re在线国产| 久久视频中文字幕| 欧美在线你懂得| 久久久久综合网| 一区二区亚洲| 欧美挤奶吃奶水xxxxx| 精品人妻一区二区三区日产乱码卜| av电影一区二区三区| 亚洲va国产va天堂va久久| 一区二区三区亚洲| 日本久久电影网| 中文字幕欧美国产| 日韩不卡一区二区| 欧美军人男男激情gay| 成人性视频免费看| 黄色片视频在线| 亚洲成人一区二区三区| 国产精品69久久| 久久久91精品| 日韩精品最新网址| 亚洲福利视频一区| 91首页免费视频| 日本欧美大码aⅴ在线播放| 日韩午夜电影网| 日韩免费一级| 91精品久久久久久久久久久久| 精品少妇人妻av免费久久洗澡| 国产精品一区二区三区观看| 欧美主播福利视频| 中文字幕亚洲色图| 精品国产免费视频| 色噜噜狠狠色综合欧洲selulu| 国产精品美女久久久久久| 国产成人精品综合在线观看| 性娇小13――14欧美| 色男人天堂综合再现| 操欧美女人视频| 国产一区二区视频在线观看免费| 国产一级免费片| 制服丝袜中文字幕第一页| 日本日本19xxxⅹhd乱影响| 亚洲一区不卡在线| 欧美日韩一区二区三| 91免费版黄色| 国产精品免费一区二区三区都可以| 午夜在线播放视频欧美| 能在线观看的av网站| 影音先锋男人的网站| 91九色极品视频| 91成人在线观看国产| 久久精品视频播放| 国产午夜精品免费一区二区三区 | 欧美激情亚洲精品| 一区二区在线视频播放| 欧美xxxxxxxx| 欧美日韩精品欧美日韩精品| 欧美午夜美女看片| blacked蜜桃精品一区| 日韩精品一区二区三区电影| 奇米影视首页 狠狠色丁香婷婷久久综合| 亚洲资源在线看| 欧美一区三区三区高中清蜜桃| 欧美成人免费全部| 久久精品人人做人人爽| 日韩在线观看网站| 久久久精品在线| 久久久国产一区二区| 色悠悠久久久久| 久久不射热爱视频精品| 欧美精品在线免费播放| 久久91亚洲精品中文字幕奶水| 久久精品国产欧美激情| 久久高清视频免费| 久久久人成影片一区二区三区观看| 久久影院模特热| 欧美成人免费小视频| 国产一区二区电影| 日韩一级淫片| 亚洲精品a区| 理论片一区二区在线| 国产精品白浆| 欧美人与牛zoz0性行为| 欧美中文一区二区| 欧美日韩国产高清电影| 欧美精品系列| 偷拍欧美精品| 婷婷伊人综合| 欧美1区3d| 狠狠综合久久| 亚洲欧美卡通另类91av| 老司机免费视频一区二区 | 亚洲国产欧美一区二区三区同亚洲| 日韩欧美中文字幕制服| 精品区一区二区| 亚洲精品视频在线观看视频| 亚洲天堂免费在线| 中文国产成人精品久久一| 精品自拍视频在线观看| 97精品国产97久久久久久免费| 啪一啪鲁一鲁2019在线视频| 国产欧美日韩91| 91色精品视频在线| 欧美亚洲另类在线一区二区三区| 日本不卡高清视频一区| 欧妇女乱妇女乱视频| 日韩在线视频播放| 91精品国产成人www| 国产精品黄视频| 国产精品一区二区欧美| 午夜探花在线观看| 国产精品丝袜久久久久久消防器材| 免费一区二区三区在线观看| 久久久国产精品无码| 日韩在线中文字幕视频| 国产精品一区二区99| 日韩午夜一区| 国产 欧美在线| 亚洲免费在线视频一区 二区| 日本道色综合久久| 亚洲精品视频久久| 国产精品1234| 日韩一区不卡| 黑人粗进入欧美aaaaa| 国产jjizz一区二区三区视频| 91综合久久爱com| 亚洲国产免费看| 粉嫩蜜臀av国产精品网站| 亚洲人成伊人成综合网小说| 在线观看亚洲a| 日韩在线免费视频观看| 亚洲一区二区三区毛片| 日本香蕉视频在线观看| 欧美肉大捧一进一出免费视频 | 吴梦梦av在线| 亚洲一区二区中文字幕在线观看| 国产午夜精品理论片| 热久久天天拍国产| 奇米精品一区二区三区在线观看| 久久亚洲精品国产精品紫薇| 色噜噜夜夜夜综合网| 欧美成人四级hd版| 久久久综合香蕉尹人综合网|