"/>

欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产

Scientists teach computers to recognize cells, using AI

Source: Xinhua    2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

Editor: yan
Related News
Xinhuanet

Scientists teach computers to recognize cells, using AI

Source: Xinhua 2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

[Editor: huaxia]
010020070750000000000000011105521371069391
欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产
中文字幕精品一区日韩| 精品国产91久久久久久浪潮蜜月| 三级欧美韩日大片在线看| 亚洲精品国产精品自产a区红杏吧| 中文字幕精品在线播放| av免费观看国产| 久久久久久久久久久久久久| 3d动漫精品啪啪1区2区免费| 免费的一级黄色片| 1024日韩| 久久久精品999| 毛茸茸free性熟hd| www久久久久| 成人毛片网站| 综合色就爱涩涩涩综合婷婷| 欧美日韩性生活| 九九爱精品视频| 男女男精品视频| 国色天香2019中文字幕在线观看| www久久久久久久| 一区二区三区在线影院| 色视频一区二区三区| 亚洲乱码电影| 色一区av在线| 日韩免费成人av| 亚洲成人免费影院| 在线一区亚洲| 欧美aⅴ一区二区三区视频| 性欧美xxxx视频在线观看| 特黄一区二区三区| 色哦色哦哦色天天综合| 国产免费裸体视频| 久久99精品国产麻豆不卡| 国产精品久久久久久久久影视| 亚瑟国产精品| 91精品国产色综合久久ai换脸| 成年人三级黄色片| 国产精品视频一区二区三区不卡| 久久青青草原一区二区| 激情亚洲网站| 97在线免费观看视频| 久久久久久久久成人| 日韩欧美在线影院| 800av在线播放| 亚洲国产一区在线观看| 欧美 国产 综合| 国产成人久久精品一区二区三区| 亚洲国产日韩a在线播放| 亚洲 欧美 综合 另类 中字| 国产精品综合二区| 精品久久久久亚洲| 久久综合图片| 99在线首页视频| 极品少妇一区二区三区| 欧美在线激情视频| 久久国产成人精品| 国产做受69高潮| 亚洲香蕉视频| 精品国产美女在线| 日韩中文字幕一区二区高清99| 亚洲精品福利资源站| 极品蜜桃臀肥臀-x88av| 欧美色电影在线| 亚洲天堂成人av| 一本大道久久精品懂色aⅴ| 一区二区在线免费看| 一区二区在线免费| 国产一二三区av| 亚洲美女屁股眼交3| 五月婷婷之综合激情| 成人免费小视频| 日韩亚洲在线视频| 一区二区在线观看不卡| 欧美性猛交xxx乱久交| 一区二区三区在线免费视频 | 91国偷自产一区二区开放时间 | 97免费在线视频| 久草在线综合| 久久伊人91精品综合网站| 理论片一区二区在线| 日韩一区二区三区xxxx| 亚洲成a人片77777在线播放| 欧美高清第一页| 日韩不卡一区| 国产精品一区二区女厕厕| 好看不卡的中文字幕| 一本久道中文字幕精品亚洲嫩| 丰满人妻一区二区三区53视频| 色综合色狠狠综合色| 国产麻豆天美果冻无码视频| 欧美一区二区久久久| 娇小11一12╳yⅹ╳毛片| 精品网站999www| 999久久久久久久久6666| 欧美大尺度激情区在线播放| 国产在视频线精品视频www666| 欧美一区深夜视频| 99精品久久| 精品高清视频| 99久久夜色精品国产网站| www国产黄色| 午夜激情综合网| 91精品人妻一区二区| 亚洲经典中文字幕| 欧美影院天天5g天天爽| 欧美一区二区三区免费观看| 久久久久免费| 色中文字幕在线观看| 国产精品成人免费精品自在线观看| 国产原创精品在线| 欧美一区二区视频观看视频| 视频一区中文字幕精品| 琪琪第一精品导航| 毛片一区二区| 久久视频免费在线| 亚洲国产va精品久久久不卡综合| xxxxx在线观看| 夜夜躁日日躁狠狠久久88av| 国产探花一区| 福利精品视频| 久久久久久久久伊人| 涩多多在线观看| 亚洲高清一区二| 欧美一区电影| 国产精品推荐精品| 久久精品一区四区| 丰满熟女人妻一区二区三区| 亚洲国产高清高潮精品美女| 精品国产一区二区三区四区| 精品久久久久久综合日本 | 福利视频网站一区二区三区| 草草久久久无码国产专区| 欧美视频一区二区三区…| 人妻人人澡人人添人人爽| 久久久精品国产亚洲| 午夜精品久久99蜜桃的功能介绍| 亚洲7777| 欧美色播在线播放| 97色成人综合网站| 91国产在线免费观看| 国产欧美日韩在线| 在线免费观看日韩av| 欧美激情综合亚洲一二区| 青青国产91久久久久久| 久久综合伊人77777麻豆最新章节| 亚洲精品在线观看网站| 亚欧美无遮挡hd高清在线视频| 亚洲资源在线网| 在线视频欧美精品| 欧美猛男做受videos| 日韩精品久久一区| 欧美综合一区二区| 日韩.com| 欧美激情亚洲天堂| 欧美va亚洲va香蕉在线| 在线精品小视频| 欧美乱大交xxxxx潮喷l头像| 日韩亚洲电影在线| 爱爱爱爱免费视频| 日韩在线观看网址| 经典三级在线一区| 手机免费看av片| 国内精品在线一区| 久久精品视频一区二区三区| 青娱乐国产视频| 国产欧美一区二区三区视频 | 日韩精品一级| 狠狠干一区二区| 五月天欧美精品| 欧美日韩大片免费观看| 日韩高清av电影| 欧美日韩一区二区电影| 亚洲不卡av不卡一区二区| 波多野结衣之无限发射| 亚洲视频在线免费观看| 美日韩一区二区| 影音先锋资源av| 秋霞午夜一区二区| 国产精品久久久久一区| jizz久久精品永久免费| 国产一区二区在线观看免费播放| 狠狠躁天天躁日日躁欧美| 国产伦精品一区二区三区千人斩 | 国产精品99视频| 久久久999视频| 色老头一区二区三区| 韩国精品久久久| 日本爱爱爱视频| 91香蕉亚洲精品| 欧美日韩激情小视频| 91九色精品| 亚洲国产精品三区| 久久乐国产精品| 1024国产精品| 精品不卡一区| 国产精品无码专区av在线播放| 久久国产精品电影| 欧美激情在线观看视频免费| 日韩精品一区二区三区中文在线| 中文字幕在线亚洲三区| 亚洲视频一区二区三区| xnxx国产精品| 亚洲8888| 国产一二三四在线视频| 欧美一区二区三区免费观看| 亚洲a一区二区| 亚洲黄色一区| 性欧美丰满熟妇xxxx性仙踪林| 99热在线国产| 精品乱码亚洲一区二区不卡| 久久成人免费日本黄色| 日韩欧美在线视频播放| 一本色道久久99精品综合| 亚洲欧美中文另类| 久久夜色精品一区| 欧美女王vk| www.超碰97.com| 成人免费福利在线| 91精品欧美综合在线观看最新| 麻豆精品新av中文字幕| 日本一区二区三区中文字幕| 国产精品12p| 欧美另类暴力丝袜| 亚洲福利视频一区二区| 亚洲一级在线| 免费高清在线观看电视| 福利在线一区二区| 欧美一区二区三区艳史| 欧美日韩亚洲综合在线 | 九9re精品视频在线观看re6| 91精品国产综合久久精品| 国产麻豆一精品一av一免费| 在线日韩成人| www.99在线| 国产主播喷水一区二区| 精品国产乱码久久| 久久久久久久综合色一本| 999国产精品999久久久久久| 日韩精品视频一区二区| 蜜桃传媒视频麻豆一区| 亚洲最新中文字幕| 亚洲伊人伊色伊影伊综合网| 免费在线播放第一区高清av| 国产一区二区三区国产精品| 亚洲欧美另类动漫| 国产无套精品一区二区| 久久久成人av| 91黄色免费版| 97久久超碰国产精品| 影音先锋成人在线电影| 在线日韩国产网站| 黑人粗进入欧美aaaaa| 国产99在线免费| 中文字幕久精品免费视频| 五月婷婷激情综合| 国产成人精品av| 日韩h在线观看| 亚洲激情综合网| 美女任你摸久久| 国产乱码精品一区二区三区四区| 小毛片在线观看| 日本大胆人体视频| 91嫩草免费看| 久久99热精品| 日韩美女视频一区二区在线观看| 日本一区二区三区国色天香| 性一交一乱一区二区洋洋av| 99ri日韩精品视频| 日本激情小视频| 18禁免费无码无遮挡不卡网站| ts人妖另类在线| 欧美精品videos| 精品国产网站在线观看| 夜夜亚洲天天久久| 波多野结衣中文字幕一区二区三区 | 欧美高清在线| 国产精品免费人成网站酒店| mm131国产精品| 日韩欧美视频免费在线观看| 国产a一区二区| 91av国产在线| 国产亚洲精品日韩| 88在线观看91蜜桃国自产| 最新国产の精品合集bt伙计| 九九国产精品视频| 亚洲高清激情| 精品一区二区三区的国产在线观看| 日韩在线不卡av| 久久无码专区国产精品s| 国自产拍偷拍精品啪啪一区二区| 日韩欧美在线视频免费观看| 91网址在线看| 久久久久久黄| 在线观看一区视频| 欧美日韩xxxx| 亚洲91网站| 日本在线观看网址| a级片在线观看视频| 国产wwwxx| 男女猛烈激情xx00免费视频| 日韩精品欧美专区| 精品久久久三级| 成人免费自拍视频| 欧美一区二区.| 欧美黑人巨大xxx极品| 在线播放亚洲激情| 亚洲另类图片色| 亚洲激情在线视频| 日韩精品综合一本久道在线视频| 色婷婷av久久久久久久| 午夜欧美视频在线观看| 综合av第一页| 中文字幕一区二区三区四区 | 国产一区二区三区丝袜| 日韩精品一区二区在线观看| 欧美伊人精品成人久久综合97| 亚洲综合网站在线观看| 亚洲免费观看高清在线观看| 亚洲7777| 亚洲精品美女久久7777777| 国产亚洲二区| 国产精品久久国产三级国电话系列| 日韩av毛片网| 日韩av高清不卡| 欧美诱惑福利视频| 欧美一级片免费在线| 91成人天堂久久成人| 韩国19禁主播vip福利视频| 欧美成年人网站| 九九久久精品一区| 欧美乱人伦中文字幕在线| 免费91麻豆精品国产自产在线观看 | 成人精品水蜜桃| 91久久精品www人人做人人爽| 91久久精品国产| 亚洲在线观看视频网站| 国产在线观看精品一区二区三区| 国产欧美在线播放| 国产美女精品视频免费观看| 91丝袜美腿美女视频网站| 91精品国产一区二区三区动漫| 99久久99久久| 国产亚洲欧美另类一区二区三区| 精品国产乱码久久久久久丨区2区| 九色91国产| 欧美最大成人综合网| 无码免费一区二区三区免费播放| 日韩av高清在线播放| 特色特色大片在线| 日韩小视频在线播放| 久久久久国产精品熟女影院| 天天干天天综合| 精品人妻一区二区三| 国产精品815.cc红桃| eeuss中文字幕| 日韩激情综合| 亚州av一区| 欧美午夜电影在线观看 | 男人天堂av电影| 97精品在线播放| 97久久综合精品久久久综合| 精品国产精品久久一区免费式| 中文字幕一区二区三区乱码图片| 激情视频一区二区三区| 久久国产精品第一页| 成人av网站免费| 成人欧美一区二区三区黑人麻豆| 亚洲第一福利一区| 欧美一区二区在线免费播放 | 一区在线播放视频| 午夜精品久久久久久久99水蜜桃| 欧美精品丝袜久久久中文字幕| 亚洲精品国产精品国自产在线| 裸体女人亚洲精品一区| 国产精品麻豆va在线播放| 91国在线观看| 日韩三级中文字幕| www亚洲欧美| 国产精品999| 日本亚洲欧洲精品| 欧美极品欧美精品欧美图片| 深田咏美中文字幕| 日韩高清二区| 亚洲乱亚洲高清| 成人教育av在线| 亚洲福利一区二区三区| 日韩欧美成人激情| 欧美黑人巨大xxx极品| av免费观看久久| 大片在线观看网站免费收看| 五月天激情播播| 日本少妇aaa| 日韩欧美一区二区三区在线视频| 视频一区国产视频| 日本一区二区不卡视频| 欧美日韩免费视频| 久久69精品久久久久久国产越南| 国产成人精品一区二区三区福利| 亚洲熟妇无码另类久久久| 免费看污黄网站在线观看|